Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with $p$-Laplacian
نویسندگان
چکیده
منابع مشابه
POSITIVE SOLUTIONS AND MULTIPLE SOLUTIONS AT NON-RESONANCE, RESONANCE AND NEAR RESONANCE FOR HEMIVARIATIONAL INEQUALITIES WITH p-LAPLACIAN
In this paper we study eigenvalue problems for hemivariational inequalities driven by the p-Laplacian differential operator. We prove the existence of positive smooth solutions for both non-resonant and resonant problems at the principal eigenvalue of the negative p-Laplacian with homogeneous Dirichlet boundary condition. We also examine problems which are near resonance both from the left and ...
متن کاملMULTIPLE SOLUTIONS FOR SEMILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE By LESZEK GASI\’{N}SKI AND NIKOLAOS
Abstract. We consider semilinear eigenvalue problems for hemivariational inequalities at resonance. First we consider problems which are at resonance in a higher eigenvalue $\lambda_{k}$ (with $k\geq 1$ ) and prove two multiplicity theorems asserting the existence of at least $k$ pairs of nontrivial solutions. Then we consider problems which are resonant at the first eigenvalue $\lambda_{1}>0$ ...
متن کاملSemilinear Hemivariational Inequalities with Strong Resonance at Infinity
A semilinear elliptic equation with strong resonance at infinity and with a nonsmooth potential is studied. Using nonsmooth critical point theory and developing some abstract minimax principles which complement and extend results in the literature, two results on existence are obtained.
متن کاملMULTIPLE SOLUTIONS FOR A PROBLEM WITH RESONANCE INVOLVING THE p-LAPLACIAN
In this paper we will investigate the existence of multiple solutions for the problem (P ) −∆pu+ g(x, u) = λ1h(x) |u|p−2 u, in Ω, u ∈ H 0 (Ω) where ∆pu = div ( |∇u|p−2 ∇u ) is the p-Laplacian operator, Ω ⊆ IR is a bounded domain with smooth boundary, h and g are bounded functions, N ≥ 1 and 1 < p < ∞. Using the Mountain Pass Theorem and the Ekeland Variational Principle, we will show the existe...
متن کاملMultiple Solutions For Semilinear Elliptic Boundary Value Problems At Resonance
In recent years several nonlinear techniques have been very successful in proving the existence of weak solutions for semilinear elliptic boundary value problems at resonance. One technique involves a variational approach where solutions are characterized as saddle points for a related functional. This argument requires that the Palais-Smale condition and some coercivity conditions are satisfie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2007
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-07-04449-2